Abstract

In 2001, A.V. Borisov and I.S. Mamaev discovered a new integrable case on the Lie algebras $e(3)$, $so(4)$ and $so(3,1)$. This is a Hamiltonian system with two degrees of freedom, where both the Hamiltonian and additional integral are homogeneous polynomials of degrees 2 and 4, respectively. In this paper, bifurcation diagram of the Hamiltonian for the integrable case under consideration on the Lie algebras $e(3)$, $so(4)$ and $so(3,1)$ for different values of parameters is constructed.

Keywords: Integrable Hamiltonian systems, critical points, bifurcation diagram.

1 Introduction

The foundations of the theory of topological classification of integrable Hamiltonian systems with two degrees of freedom was established in [4,5]. In the sequel, various methods of calculation of invariants classifying systems on isoenergy surfaces were developed in [2]. Those invariants were calculated for many classic integrable cases appearing in the mechanics and mathematical physics. We construct the bifurcation diagram of one of integrable cases revealed recently (Borisov-Mamaev case on $e(3)$, $so(4)$ and $so(3,1)$).

1.1 Euler’s equations on Lie algebras

Let g be a finite-dimensional Lie algebra and g^* the corresponding coalgebra (the space of linear functions on g). Consider a basis $e_1, e_2, ..., e_n$ in the Lie algebra g and the corresponding structural constants c_{ij}^k of the algebra g in this basis. Thus, the Lie bracket corresponding to the Lie algebra g is written in the following form:

$$[e_i, e_j] = c_{ij}^k e_k$$

Let $x_1, x_2, ..., x_n$ be the linear coordinates on g^* corresponding to the basis $e_1, e_2, ..., e_n$.

Definition 1.1 The Poisson bracket on g^* defined by the formula

$$\{f, g\}(x) = c_{ij}^k x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$$

where f, g are smooth functions on g^*, is called the Lie–Poisson bracket for the Lie algebra g.

Definition 1.2 The equations

$$\dot{x}_i = \{x_i, H\}$$

which define a dynamical system on g^*, where H is a smooth function on g^*, are called Euler’s equations for the Lie algebra g.

It is well known (see, for example, [7]) that the dynamical system defined by Euler’s equations is Hamiltonian (with Hamiltonian H) on orbits of the coadjoint representation of the Lie algebra g. The corresponding vector field on the orbits is called the skew-gradient of the function H and is denoted by $sgradH$.

Many dynamical systems describing mechanical and physical problems can be written in the form of Euler’s equations for a certain Lie algebra. For example, various problems on the motion of a rigid body are described by Euler’s equations for the Lie algebra $e(3)$ (see [3,6,7]). Those systems are Hamiltonian systems with two degrees of freedom on orbits of the Lie algebra $e(3)$. The integrability of such systems means the existence of an integral that is functionally independent with the Hamiltonian H on orbits. In the section 1.2, we describe an integrable system on the Lie algebras $e(3)$, $so(4)$ and $so(3,1)$ with quadratic Hamiltonian and integral of degree of four, which was found by A.V. Borisov and I.S. Mamaev in [1].

1.2 Borisov-Mamaev Integrable case on the Lie Algebras $e(3)$, $so(4)$ and $so(3,1)$

On the space $e(3)^*$ dual to the Lie algebra $e(3)$ we consider linear coordinates $S_1, S_2, S_3, R_1, R_2, R_3$ for which the Lie-Poisson bracket has the form

$$\{S_i, S_j\} = \varepsilon_{ijk} S_k, \{S_i, R_j\} = \varepsilon_{ijk} R_k, \{R_i, R_j\} = 0$$

Also on the space $so(4)^*$ dual to the Lie algebra $so(4)$ Lie-Poisson bracket has the form

$$\{S_i, S_j\} = \varepsilon_{ijk} S_k, \{S_i, R_j\} = \varepsilon_{ijk} R_k, \{R_i, R_j\} = \varepsilon_{ijk} S_k$$

And also on the space $so(3,1)^*$ dual to the Lie algebra $so(3,1)$ Lie-Poisson bracket has the form

$$\{S_i, S_j\} = \varepsilon_{ijk} S_k, \{S_i, R_j\} = \varepsilon_{ijk} R_k, \{R_i, R_j\} = -\varepsilon_{ijk} S_k$$

where ε_{ijk} is the sign of the permutation $(123) \rightarrow (ijk)$. It is convenient to regard the coordinates (S_1, S_2, S_3) and (R_1, R_2, R_3) as components of two three-dimensional vectors S and R.

Euler’s equations on $e(3)^*$, $so(4)^*$ and $so(3,1)^*$ with Hamiltonian H take the following form:

$$\dot{S}_i = \{S_i, H\}, \dot{R}_i = \{R_i, H\}$$

The Euler equations mentioned above always have two Casimir functions on the space $e(3)^*$ has the form:

$$f_1 = R^2, f_2 = \langle S, R \rangle$$

Also on the space $so(4)^*$ has the form:

$$f_1 = S^2 + R^2, f_2 = \langle S, R \rangle$$

And also for the space $so(3,1)^*$ has the form:

$$f_1 = -S^2 + R^2, f_2 = \langle S, R \rangle$$

where $\langle ., . \rangle$ is the Euclidean scalar product in \mathbb{R}^3 (in particular, S^2 and R^2 denote the scalar squares of the vectors S and R). The functions f_1 and f_2 commute with respect to the Lie-Poisson bracket with all functions, and their common levels

$$M_{c,g} = \{(S, R)| f_1(S, R) = c, f_2(S, R) = g\}$$

are orbits of the coadjoint representation of the Lie algebra $g = e(3), so(4), so(3,1)$. The restriction of the Lie-Poisson bracket to $M_{c,g}$ is nondegenerate, that is, it defines a symplectic structure on orbits. The Hamiltonian H and additional integral K in Borisov-Mamaev case on the Lie algebra $e(3)$ have the following form:
2. Critical \(R \) and arbitrary \(c \) is reduced to the case \(c = 1 \). So in what follows we shall consider only orbits \(M_{1,g}^4 \). Moreover, without loss generality, one can assume that \(0 \leq g \) since, for example, the coordinate transformation

\[
(S_1, S_2, S_3, R_1, R_2, R_3) \rightarrow (-S_1, S_2, S_3, R_1, -R_2, -R_3)
\]

preserves the invariant \(f_1 \), the Hamiltonian \(H \), and the integral \(K \) and changes the sign of the invariant \(f_2 \). Similarly, one can decrease the number of cases for the parameter \(\alpha \) to be considered. The transformation \(S_i \rightarrow -S_i \), \(R_i \rightarrow -R_i \) and \(\alpha \rightarrow -\alpha \) preserve the invariants \(f_1 \), \(f_2 \) and the integral \(K \) while the Hamiltonian \(H \) merely changes the sign (this does not affect the topology of the system under consideration), thus one can assume that \(\alpha > 0 \).

2 The bifurcation diagram for the Hamiltonian \(H \)

By definition, bifurcation values of the Hamiltonian are critical values of the map \(H : M_{1,g}^4 \rightarrow \mathbb{P}(h) \). Critical points of the Hamiltonian are zeros of its skew gradient.

We can write out the vector field \(sgrad \ H \), for the Hamiltonian \(H \) on the Lie algebra \(e(3) \) explicitly, in the following form:

\[
\begin{align*}
\{S_1, H\} &= 2\alpha S_2 S_3 + S_i R_j - S_j R_i, \\
\{S_2, H\} &= S_i R_j - S_j R_i, \\
\{S_3, H\} &= -2\alpha S_2 S_3, \\
\{R_1, H\} &= 4\alpha S_2 R_3 - 2\alpha S_3 R_2 - R_i R_j, \\
\{R_2, H\} &= -2\alpha S_2 R_3 + 2\alpha S_3 R_2 - R_i R_j, \\
\{R_3, H\} &= 2\alpha S_2 R_3 - 4\alpha S_2 R_1 + R_i^2 + R_j^2.
\end{align*}
\]

setting \(sgrad \ H \) equal to zero we obtain the following results.

Theorem 2.1 The critical points of the Hamiltonian \(H \) are formed by the following two-parameter families (the
skew gradient $\text{grad}\, K$ also vanishes at these point) in the space $e(3) = P^6(S, R):$

1) $(0, 0, S_j, 0, 0, R_j)\)

2) $(0, S_2, 0, R_1, R_2, 0); \text{ where } -4\alpha S_2 R_1 + R_1^2 + R_2^2 = 0$

3) $(0, S_2, S_3, 2\alpha S_2, 2\alpha S_2, 2\alpha S_3);$

4) $(0, S_2, S_3, 2\alpha S_2, -2\alpha S_2, -2\alpha S_3);$

5) $(S_1, 0, 0, R_1, R_2, 0); \text{ where } 2\alpha S_1 R_2 + R_1^2 + R_2^2 = 0$

We shall be investigating the system on $M^4_{1,g}$, so we need the additional conditions $f_1 = 1$ and $f_2 = g$.

Theorem 2.2 The critical points of the Hamiltonian H on $M^4_{1,g}$ are listed below as five series corresponding to the five families from Theorem 2.1:

1) For any g, there exist four points of the form

 $$(0, 0, S_1, 0, 0, R_1); \text{ where } R_1^2 = 1, S_1 R_1 = g$$

 here $h = \alpha g^2$.

2) For any g, there exist four points of the form

 $$(0, S_2, 0, \frac{1}{4\alpha S_2}, \frac{g}{S_2}, 0); \text{ where } S_2^2 = \frac{16\alpha^2 g^2 + 1}{16\alpha^2}$$

 here $h = \frac{16\alpha^2 g^2 - 1}{8\alpha}$.

3) For any $\frac{1}{4\alpha} \leq g \leq \frac{1}{2\alpha}$ there exist four points of the form

 $$(0, S_2, S_3, 2\alpha S_2, 2\alpha S_2, 2\alpha S_3)$$

 where

 $$S_2^2 = \frac{1 - 2\alpha g}{4\alpha^2}; \quad S_3^2 = \frac{4\alpha g - 1}{4\alpha^2}$$

 here $h = \frac{4\alpha g - 1}{4\alpha}$.

4) For any $\frac{1}{2\alpha} \leq g \leq \frac{1}{4\alpha}$ there exist four points of the form

 $$(0, S_2, S_3, 2\alpha S_2, -2\alpha S_2, -2\alpha S_3)$$

 where

 $$S_2^2 = \frac{1 + 2\alpha g}{4\alpha^2}; \quad S_3^2 = -\frac{4\alpha g + 1}{4\alpha^2}$$

 here $h = -\frac{4\alpha g + 1}{4\alpha}$.

5) For any g there exist four points of the form

 $$(S_1, 0, 0, \frac{g}{S_1}, \frac{1}{2\alpha S_1}, 0)$$

 where
\[
S^2_i = \frac{1 + 4\alpha^2 g^2}{4\alpha^2}
\]

here \(h = \frac{4\alpha^2 g^2 - 1}{4\alpha} \).

Theorem 2.3 The bifurcation diagram on the case \(e(3) \) in the plane \(P^2(g, h) \) for the mapping \(f_z \times H \) consists of the following one-dimensional trajectories:

1) \(h = ag^2; \ g \in P \)
2) \(h = 2ag^2 - \frac{1}{8\alpha}; \ g \in P \)
3) \(h = ag^2 - \frac{1}{4\alpha}; \ g \in P \)
4) \(h = g - \frac{1}{4\alpha}; \ \frac{1}{4\alpha} \leq g \leq \frac{1}{2\alpha} \)
5) \(h = -g - \frac{1}{4\alpha}; -\frac{1}{2\alpha} \leq g \leq -\frac{1}{4\alpha} \)

Note that the bifurcation diagram is symmetric about the axis \(g = 0 \).

![Figure 1: Bifurcation diagram for Hamiltonian \(H \) on the Lie algebra \(e(3) \)](image)

Also we can write out the vector field \(\text{grad} \ H \), for the Hamiltonian \(H \) on the Lie algebra \(so(4) \) explicitly, in the following form:

\[
\{S_1, H\} = 2\alpha S_2 S_3 + S_2 R_3 - S_3 R_1,
\]

\[
\{S_2, H\} = \frac{1}{2\alpha} S_1 S_3 + S_2 R_3 - S_3 R_2,
\]

\[
\{S_3, H\} = -2(\alpha + \frac{1}{4\alpha}) S_2 S_2,
\]

\[
\{R_1, H\} = 4\alpha S_2 R_3 - 2\alpha S_2 R_2 + S_3 S_3 - R_3 R_3,
\]

\[
\{R_2, H\} = -2(\alpha - \frac{1}{4\alpha}) S_1 R_3 + 2\alpha S_3 R_1 - R_2 R_3 + S_2 S_3,
\]
\[\{ R_3, H \} = 2(\alpha - \frac{1}{4\alpha})S_1R_2 - 4\alpha S_2 R_1 + R_1^2 + R_2^2 - S_1^2 - S_2^2 . \]

setting \(sgrad \ H \) equal to zero we obtain the following results.

Theorem 2.4 The critical points of the Hamiltonian \(H \) are formed by the following two-parameter families (the skew gradient \(sgrad \ K \) also vanishes at these point) in the space \(so(4) = D^4(S, R) \):

1) \((0,0, S_1, 0,0, R_1)\)
2) \((0, S_2, 0, R_1, R_2, 0)\); where \(-4\alpha S_2 R_1 + R_1^2 + R_2^2 - S_2^2 = 0\)
3) \((0, S_2, S_3, 2\alpha S_2, \sqrt{4\alpha^2 + 1} S_2, \sqrt{4\alpha^2 + 1} S_2)\);
4) \((0, S_2, S_3, 2\alpha S_2, -\sqrt{4\alpha^2 + 1} S_2, -\sqrt{4\alpha^2 + 1} S_2)\);
5) \((S_1, 0,0, R_1, R_2, 0)\); where \(2(\alpha - \frac{1}{4\alpha})S_1R_2 + R_1^2 + R_2^2 - S_1^2 = 0\)

Theorem 2.5 The critical points of the Hamiltonian \(H \) on \(M_{4,g} \) are listed below as five series corresponding to the five families from Theorem 2.4:

1) For any \(0 \leq g \leq \frac{1}{2} \), there exist four points of the form

\[
(0,0, S_1, 0,0, R_1); \text{where} S_3^2 + R_3^2 = 1, S_3 R_3 = g
\]

here \(h = \frac{\alpha}{2} \left(1 + \sqrt{1 - 4g^2}\right) \).

2) For any \(0 \leq g \leq \frac{1}{2} \), there exist four points of the form

\[
(0, S_2, 0, \frac{1}{4\alpha S_2} - \frac{S_2}{2\alpha}, g, 0); \text{where} S_3^2 = \frac{1}{2} \pm \alpha \sqrt{\frac{1 - 4g^2}{1 + 4\alpha^2}}
\]

here \(h = \alpha \pm \frac{1}{2} \sqrt{(1 + 4\alpha^2)(1 - 4g^2)} \).

3) For any \(\frac{1}{2\sqrt{1 + 4\alpha^2}} \leq g \leq \frac{\sqrt{1 + 4\alpha^2}}{2 + 4\alpha^2} \) there exist four points of the form

\[
(0, S_2, S_3, 2\alpha S_2, \sqrt{1 + 4\alpha^2} S_2, \sqrt{1 + 4\alpha^2} S_2)
\]

where

\[
S_3^2 = \frac{\sqrt{1 + 4\alpha^2} - (2 + 4\alpha^2)g}{4\alpha^2 \sqrt{1 + 4\alpha^2}}; \quad S_3^2 = \frac{2\sqrt{1 + 4\alpha^2} g - 1}{4\alpha^2}
\]

here \(h = \frac{2\sqrt{1 + 4\alpha^2} g - 1}{4\alpha} \).

4) For any \(\frac{\sqrt{1 + 4\alpha^2}}{2 + 4\alpha^2} \leq g \leq -\frac{1}{2\sqrt{1 + 4\alpha^2}} \) there exist four points of the form

\[
(0, S_2, S_3, 2\alpha S_2, -\sqrt{1 + 4\alpha^2} S_2, -\sqrt{1 + 4\alpha^2} S_2)
\]

where
\[S_2^2 = \frac{\sqrt{1+4\alpha^2} + (2+4\alpha^2)g}{4\alpha^2 \sqrt{1+4\alpha^2}}; S_3^2 = \frac{2\sqrt{1+4\alpha^2}g + 1}{-4\alpha^2} \]

here \(h = -\frac{2\sqrt{1+4\alpha^2}g + 1}{4\alpha} \).

5) For any \(0 \leq g \leq \frac{1}{2} \) there exist four points of the form

\[(S_1,0,0, \frac{4\alpha S_1}{4\alpha^2 - 1} - \frac{2\alpha}{(4\alpha^2 - 1)S_1},0) \]

where

\[S_1^2 = \frac{1}{2} \mp \frac{1}{2} \sqrt{\frac{(1-4g^2)(4\alpha^2 - 1)^2}{(1+4\alpha^2)^3}} \]

here \(h = \frac{4\alpha^2 - 1}{8\alpha} \pm \frac{1}{8\alpha} \sqrt{(1-4g^2)(1+4\alpha^2)^2} \).

Theorem 2.6 The bifurcation diagram on the case \(so(4) \) in the plane \(P^2(g,h) \) for the mapping \(f_2 \times H \) consists of the following one-dimensional trajectories:

1) \(\left(\frac{2h}{\alpha} - 1 \right)^2 + 4\alpha g^2 = 1 ; \ g \in P \)

2) \(\left(\frac{2h - 2\alpha}{1 + 4\alpha^2} \right) + 4g^2 = 1 ; \ g \in P \)

3) \(\left(\frac{8\alpha h - 4\alpha^2 + 1}{1 + 4\alpha^2} \right)^2 + 4g^2 = 1 ; \ g \in P \)

4) \(h = \frac{\sqrt{1+4\alpha^2}}{2\alpha} - \frac{1}{4\alpha} \leq g \leq \frac{\sqrt{1+4\alpha^2}}{2 + 4\alpha^2} \)

5) \(h = -\frac{\sqrt{1+4\alpha^2} + 1}{2\alpha} - \frac{1}{4\alpha} \leq g \leq -\frac{\sqrt{1+4\alpha^2}}{2 + 4\alpha^2} \)

6) \(\frac{4\alpha^2 - 1}{8\alpha} \leq h \leq \alpha ; \ g = \frac{1}{2} \)

7) \(\frac{4\alpha^2 - 1}{8\alpha} \leq h \leq \alpha ; \ g = -\frac{1}{2} \)

Note that the bifurcation diagram is symmetric about the axis \(g = 0 \).
Figure 2: Bifurcation diagram for Hamiltonian H on the Lie algebra $so(4)$

And also We can write out the vector field $sgrad\ H$, for the Hamiltonian H on the Lie algebra $so(3,1)$ explicitly, in the following form:

$$\{S_1, H\} = 2\alpha S_2 S_3 + S_1 R_3 - S_3 R_1,$$

$$\{S_2, H\} = -\frac{1}{2\alpha} S_1 S_3 + S_2 R_3 - S_3 R_2,$$

$$\{S_3, H\} = -2(\alpha - \frac{1}{4\alpha}) S_1 S_2,$$

$$\{R_1, H\} = 4\alpha S_2 R_3 - 2\alpha S_3 R_2 - S_1 S_3 - R_1 R_3,$$

$$\{R_2, H\} = -2(\alpha + \frac{1}{4\alpha}) S_1 R_3 + 2\alpha S_3 R_1 - R_1 R_3 - S_2 S_3,$$

$$\{R_3, H\} = 2(\alpha + \frac{1}{4\alpha}) S_1 R_2 - 4\alpha S_2 R_1 + R_1^2 + R_2^2 + S_1^2 + S_2^2.$$

setting $sgrad\ H$ equal to zero we obtain the following results.

Theorem 2.7 For an arbitrary $\alpha \neq \frac{1}{2}$ the critical points of the Hamiltonian H are formed by the following two-parameter families (the skew gradient $sgrad\ K$ also vanishes at these point) in the space $so(3,1)^* = P^6(S,R)$:

1)$(0,0,S_3,0,0,R_3)$

2)$(0,S_2,0,R_1,R_2,0)$; where $-4\alpha S_2 R_1 + R_1^2 + R_2^2 + S_1^2 = 0$
3) \((0, S_2, S_3, 2\alpha S_2, \sqrt{4\alpha^2 - 1} S_2, \sqrt{4\alpha^2 - 1} S_3); \) for \(\alpha > \frac{1}{2}\)

4) \((0, S_2, S_3, 2\alpha S_2, -\sqrt{4\alpha^2 - 1} S_2, -\sqrt{4\alpha^2 - 1} S_3); \) for \(\alpha > \frac{1}{2}\)

5) \((S_1, 0, 0, R_1, R_2, 0); \) where \(2(\alpha + \frac{1}{4\alpha}) S_1 R_2 + R_1^2 + R_2^2 + S_1^2 = 0\)

Theorem 2.8 For any \(\alpha > \frac{1}{2}\) the critical points of the Hamiltonian \(H\) on \(M_4^4\) are listed below as five series corresponding to the five families from Theorem 2.7:

1) For any \(g\), there exist four points of the form

\[(0, 0, S_1, 0, 0, R_1); \text{where } -S_3^2 + R_3^2 = 1, S_3 R_3 = g\]

where \(h = \frac{\alpha}{2} (-1 + \sqrt{1 + 4g^2})\).

2) For any \(g\), there exist four points of the form

\[(0, S_2, 0, \frac{1}{4\alpha} S_2, S_2, g, 0); \text{where } S_2^2 = -\frac{1}{2} + \alpha \sqrt{\frac{1 + 4g^2}{4\alpha^2 - 1}}\]

where \(h = \alpha + \frac{1}{2} \sqrt{(4\alpha^2 - 1)(1 + 4g^2)}\).

3) For any \(\frac{1}{2\sqrt{4\alpha^2 - 1}} \leq g \leq \frac{\sqrt{4\alpha^2 - 1}}{4\alpha^2 - 2}\) there exist four points of the form

\[(0, S_2, S_3, 2\alpha S_2, \sqrt{4\alpha^2 - 1} S_2, \sqrt{4\alpha^2 - 1} S_3)\]

where

\[S_2^2 = \frac{\sqrt{4\alpha^2 - 1} - (4\alpha^2 - 2)g}{4\alpha^2 \sqrt{4\alpha^2 - 1}}; S_3^2 = \frac{2\sqrt{4\alpha^2 - 1}g - 1}{4\alpha^2}\]

where \(h = \frac{2\sqrt{4\alpha^2 - 1}g - 1}{4\alpha}\).

4) For any \(\frac{\sqrt{4\alpha^2 - 1}}{4\alpha^2 - 2} \leq g \leq -\frac{1}{2\sqrt{4\alpha^2 - 1}}\) there exist four points of the form

\[(0, S_2, S_3, 2\alpha S_2, -\sqrt{4\alpha^2 - 1} S_2, -\sqrt{4\alpha^2 - 1} S_3)\]

where

\[S_2^2 = \frac{\sqrt{4\alpha^2 - 1} + (4\alpha^2 - 2)g}{4\alpha^2 \sqrt{4\alpha^2 - 1}}; S_3^2 = \frac{2\sqrt{4\alpha^2 - 1}g + 1}{-4\alpha^2}\]

where \(h = -\frac{2\sqrt{4\alpha^2 - 1}g + 1}{4\alpha}\).

5) For any \(g\) there exist four points of the form

\[(S_1, 0, 0, \frac{g}{S_1}, \frac{4\alpha S_1}{4\alpha^2 + 1} - \frac{2\alpha}{(4\alpha^2 + 1)S_1}, 0)\]
where

\[S_1^2 = \frac{-1}{2} + \frac{1}{2} \sqrt{(1+4g^2)(4\alpha^2 +1)^2 \over (4\alpha^2 -1)^2} \]

here \(h = -\frac{4\alpha^2 +1}{8\alpha} \quad \text{and} \quad \frac{1}{8\alpha} \sqrt{(1+4g^2)(4\alpha^2 -1)^2} \).

Theorem 2.9 The bifurcation diagram in the case \(so(3,1) \) the plane \(P^2(g,h) \) for the mapping \(f_2 \times H \) consists of the following one-dimensional trajectories:

1) \(\left(\frac{2h}{\alpha} -1 \right)^2 - 4\alpha g^2 = 1 \quad g \in P \)

2) \(\frac{(2h + 2\alpha)^2}{4\alpha^2 -1} - 4g^2 = 1 \quad g \in P \)

3) \(\frac{(8\alpha h + 4\alpha^2 +1)(-1)^2}{4\alpha^2} - 4g^2 = 1 \quad g \in P \)

4) \(h = \frac{\sqrt{4\alpha^2 -1}}{2\alpha} g - \frac{1}{4\alpha} \quad \frac{1}{2\sqrt{4\alpha^2 -1}} \leq g \leq \frac{\sqrt{4\alpha^2 -1}}{4\alpha^2 -2} \)

5) \(h = -\sqrt{4\alpha^2 -1} \quad g - \frac{1}{4\alpha} \quad \frac{-\sqrt{4\alpha^2 -1}}{4\alpha^2 -2} \leq g \leq -\frac{1}{2\sqrt{4\alpha^2 -1}} \)

Note that the bifurcation diagram is symmetric about the axis \(g = 0 \).

Figure 3: Bifurcation diagram for Hamiltonian \(H \) on the Lie algebra \(so(3,1) \)

References
